- The refractive index of rutile TiO2 is among the highest known, which results in unparalleled hiding power in paints and coatings. Its ability to reflect light across a broad spectrum enhances the brightness and opacity of products, thereby reducing the amount of pigment required to achieve the desired effect. Consequently, rutile is frequently chosen over other types of TiO2 in industrial applications where high performance and cost efficiency are paramount.
- Particle Size and Shape
- In conclusion, titanium dioxide is a indispensable additive in rubber manufacturing, offering a range of benefits that make it an essential component in many rubber products. As a responsible rubber supplier, we at [Company Name] are committed to providing our customers with the highest quality TiO2 to ensure the optimal performance and longevity of their products. Whether you are looking for white tires, shoe soles, or rubber gloves, we have the right formulation to meet your needs. Contact us today to learn more about our titanium dioxide offerings and how they can benefit your business.
In a lawsuit filed last week, a consumer alleged that Skittles were unfit for human consumption because the rainbow candy contained a known toxin – an artificial color additive called titanium dioxide.





Barium sulphate is typically described as a white, odorless powder. This white coloration is due to its crystalline structure and the arrangement of Ba^2+ and SO₄^2− ions within the compound. The brightness and consistency of this white powder are crucial for its use in various applications. For instance, in the pharmaceutical industry, barium sulphate is used as a radiopaque agent in X-ray imaging of the gastrointestinal tract. In this context, its purity and the absence of color impurities are vital for ensuring accurate imaging results.

Titanium dioxide, a versatile and widely used material, finds its application in various industries including the rubber industry
. This white pigment is known for its excellent UV resistance, durability, and opacity, making it an ideal choice for enhancing the properties of rubber products.Because of their small size, nanoparticles may have unique physical and chemical properties. These properties may cause them to interact with living systems differently than larger materials with the same chemical composition (also known as bulk materials).
Rutile Titanium Dioxide Hutong HTR-628
Thermogravimetric analysis (TGA) was conducted in a sample of vitaminB2@P25TiO2NPs using a TA-THA Q5000 equipment. Temperature ramp rate: 10 °C/min, maximum temperature: 1000 °C, under air. Part of the same sample was mounted on conductive copper tape grids and observed through a Carl Zeiss Sigma scanning electron microscope (SEM) with an EDS probe, at the “Laboratorio de Microscopía y Análisis por Rayos X” (LAMARX) of National University of Córdoba (Argentina).
While lithopone and anatase titanium white gained traction between the 1920s and 1950s, by the advent of the First World War, rutile titanium white had started to overshadow them. Their significance in the artist’s palette has since dwindled, and their use as an artist’s pigment is currently nearly obsolete.
The biological activity, biocompatibility, and corrosion resistance of implants depend primarily on titanium dioxide (TiO2) film on biomedical titanium alloy (Ti6Al4V). This research is aimed at getting an ideal temperature range for forming a dense titanium dioxide (TiO2) film during titanium alloy cutting. This article is based on Gibbs free energy, entropy changes, and oxygen partial pressure equations to perform thermodynamic calculations on the oxidation reaction of titanium alloys, studies the oxidation reaction history of titanium alloys, and analyzes the formation conditions of titanium dioxide. The heat oxidation experiment was carried out. The chemical composition was analyzed with an energy dispersive spectrometer (EDS). The results revealed that titanium dioxide (TiO2) is the main reaction product on the surface below 900°C. Excellent porous oxidation films can be obtained between 670°C and 750°C, which is helpful to improve the bioactivity and osseointegration of implants.